

MINOR ALKALOIDS OF *GLAUCIUM FLAVUM*

E. DASKALOVA, E. ISKRENOVA, H. G. KIRYAKOV* and L. EVSTATIEVA†

Department of Chemistry, Higher Medical Institute, 4000 Plovdiv, Bulgaria; † Institute of Botany, Bulgarian Academy of Sciences, Sofia, Bulgaria

(Revised received 23 June 1987)

Key Word Index—*Glaucium flavum*; Papaveraceae; alkaloids; dihydropontedrine; structure elucidation.

Abstract—The new aporphine base, dihydropontedrine, has been found in an ethanol extract of *Glaucium flavum* along with a number of known alkaloids, some of which were isolated for the first time from this plant material.

INTRODUCTION

The alkaloids of *Glaucium flavum* Crantz. have been the subject of several investigations [1-8]. From these studies the following alkaloids have been identified: protopine [1-4, 7], glaucine [1, 3, 5, 7], sanguinarine [2-4], chelerythrine [2-4], chelirubine [2-4], (+)-isocorydine [1, 3, 4, 9], (-)-chelidone [3, 9], α -allocryptopine [2, 3], (+)-corydine [3], (-)-norchelidone [3, 4], 1,2,9,10-tetramethoxyxaporphine [9], 6',7'-dehydroglaucine, 6,6'-dehydrororglaucine [9-11], thalidomidine [10], isoboldine [4], norsanguinarine [8], oxyanguinarine [8], luguine [8], (+)-N-methylindcarpine [8], corunnine [5], pontedrine [5], (+)-cataline [6], didehydroglaucine [8], arosine [8] and arosinine [8].

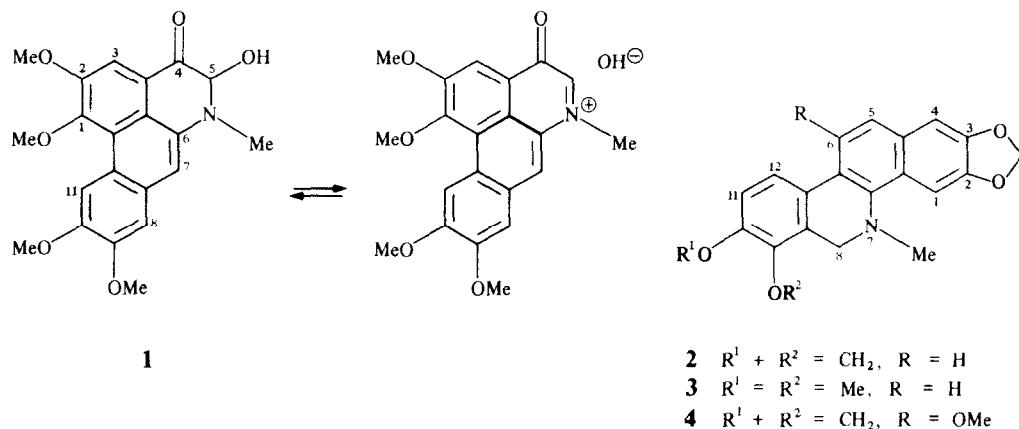
Since *G. flavum* is rich in isoquinoline alkaloids, especially in aporphine and benzophenanthridine bases, we decided to carry out a more detailed investigation of its alkaloidal content with a view to isolate other alkaloids. As a result of this study, we have observed the presence of several previously reported alkaloids from the plant, namely, didehydroglaucine, 6',7'-dehydroglaucine, (+)-glaucine, protopine, (+)-isocorydine, (+)-corydine, (-)-norchelidone, (+)-cataline, 1,2,9,10-tetramethoxyxaporphine, α -allocryptopine, corunnine, isoboldine and norsanguinarine. We have also isolated a new aporphine base which has been identified as dihydropontedrine (1) and three other minor alkaloids, dihydrosanguinarine (2), dihydrochelerythrine (3) and dihydrochelirubine (4), found for the first time in this plant material.

RESULTS AND DISCUSSION

The dihydropontedrine (1) crystallized from ethanol as red needles, mp 251-253°. The mass spectrum of 1 had $[M]^+$ at m/z 383 (3.5) corresponding in composition to $C_{21}H_{21}NO_6$. There were fragment ions at m/z 381 ($[M-2]^+$, 100), 367 (35), 353 (16.5), 338 (26.2), 336 (35.5), 295 (8.7), 229 (10.5), 177 (12) and 94 (19).

The structure assigned to the alkaloid was supported by its 60 MHz 1H NMR spectrum in $CDCl_3$. There were singlets at δ 3.80 (3H, N-Me) 4.02 (3H, OMe), 4.04 (3H,

OMe) and 4.10 (6H, 2 \times OMe). The aromatic region of the spectrum contained peaks for five protons at δ 7.30, 7.37, 8.20 and 9.14. Some of these peaks were not well resolved which probably arises from a pseudo base-iminium equilibrium in which state the alkaloid exists (see below). The UV spectrum of 1 which showed λ_{max}^{EtOH} ($\log e$) 244 (4.58), 3.12 (4.26), 325 (4.37) and 470 (4.0) nm was not affected by acid or base. In the IR spectrum (KBr) of the alkaloid absorption bands at 3600-3200 cm^{-1} (assoc. OH), 1665 cm^{-1} (C=O) and 1595 cm^{-1} (C=C and C=N $^+$) were observed. The alkaloid also gave a positive ferric chloride test. The colour reaction, UV and IR spectra of 1 are very similar to those of pontedrine [5] but it differs in NMR and mass spectra as well as TLC behaviour.


The above spectral data completely support the structure assigned to dihydropontedrine. They are close to those described for a synthetic product found in the mixture obtained after UV irradiation of glaucine and named dihydropontedrine [12]. By direct comparison (IR, UV, mmp and TLC) the identity of 1 and this synthetic product was shown.

EXPERIMENTAL

General. IR spectra were recorded in $CHCl_3$ or KBr. 1H NMR were measured at 60 or 100 MHz in $CDCl_3$ soln with TMS as int. std. Chemical shifts are expressed in δ (ppm from TMS). UV spectra were recorded in EtOH. Mps: uncorr. Al_2O_3 (Brockmann II neutral, Reanal) was used for CC. TLC was performed on silica gel F-254 plates (Merck) in C_6H_6 (S_1); toluene-EtOH-NH $_3$ (40:9:2) (S_2) and $CHCl_3-C_6H_6-MeOH$ (1:1:1) (S_3). Plant material (whole plant with blossoms and unripe fruits) was collected in July 1983 in the vicinity of Ahtopol, Bulgaria. The identification of didehydroglaucine, dihydrochelirubine, norsanguinarine, (-)-norchelidone and (+)-cataline was made by comparison of their spectroscopic properties with those given in the lit. All other alkaloids were identified by spectroscopic, mp, mmp and TLC comparison with authentic samples.

Isolation of alkaloids. Air-dried plant material (2 kg) was extd exhaustively with EtOH in a Soxhlet apparatus, the extract concd nearly to dryness and then treated with 2% aq. HCl. The resulting acid soln was extracted with Et_2O until the extract was nearly colourless and then it was made basic with aq. NH $_3$. The alkaline soln was extracted firstly with Et_2O and secondly with

*Author to whom correspondence should be addressed.

$CHCl_3$. After removal of solvents the two fractions showed (TLC) an almost identical alkaloidal content. The combine yield was 26 g (1.3%) of crude alkaloids.

Separation of alkaloid mixture. Crude alkaloids (26 g) were chromatographed on Al_2O_3 (1 kg). The column was eluted first with C_6H_6 and then with C_6H_6 containing increasing amounts (from 0.5 to 10%) MeOH. The different fractions (each 25 ml) were collected into five groups (major fractions), A to F, based on their TLC characteristics. The components of each of these fractions was further fractionated by rechromatography, fractional recrystallization or prep. TLC.

Fraction A. Fraction A (2.3 g) eluted with C_6H_6 was fractionated by rechromatography on a small column. Didehydroglaucine, dihydrochelirubine (20 mg), dihydrosanguinarine (32 mg, colourless prisms mp 190–191° (EtOH) [13]), norsanguinarine (35 mg), dihydrochelerythrine [(22 mg, colourless prisms, mp 164–165° (EtOH) [13]) and 6',7-dehydroglaucine (0.850 g, yellowish prisms, mp 134–136° (EtOH) [11]), were obtained. S_1 was used for TLC.

Didehydroglaucine, unstable, yellow, amorphous. IR: ($CHCl_3$) ν_{max} 1650 and 1610 cm^{-1} ($C=C$ and aromatic ring). 60 MHz 1H NMR: ($CDCl_3$) δ 3.35 (3H, s, N-Me), 4.31 (3H, s, OMe), 4.20 (3H, s, OMe) and 4.28 (6H, s, $2 \times$ OMe); unsplit protons at δ 7.17 (1H, s), 6.78 (1H, s) and 6.30 (1H, s); one doublet at δ 5.91 and 6.60 ($J = 7.5$ Hz). These spectral data are almost identical with those reported for didehydroglaucine [6].

Dihydrochelirubine, colourless prisms, mp 205–207° (EtOH). UV: (EtOH) $\lambda_{max}(\log \epsilon)$ 230 (4.58), 281 (4.52) and 339 (4.32) nm. 60 MHz 1H NMR: ($CDCl_3$) δ 2.61 (3H, s, N-Me), 6.08 (2H, s, CH_2O_2), 6.11 (2H, s, CH_2O_2), 3.85 (3H, s, OMe), 4.05 (2H, s, CH_2), 7.05 (1H, s), 7.35 (1H, s) and a pair of *ortho* protons appeared as an ABq at δ 7.50 and 8.33 ($J_{11,12} = 8.5$ Hz). On the basis of these spectral data, which are close to those reported for dihydrobocconine [15] (= dihydrochelirubine [16, 17]), the alkaloid was identified as dihydrochelirubine.

Norsanguinarine, colourless prisms, mp 290–292° (EtOH). UV: (EtOH) $\lambda_{max}(\log \epsilon)$ 243 (4.62), 281 (4.51), 295 sh (4.39) and 329 (4.21) nm; 100 MHz 1H NMR: ($CDCl_3$) δ 6.13 (2H, s, CH_2O_2), 6.29 (2H, s, CH_2O_2), one ABq at δ 7.88 and 8.17 ($J_{11,12} = 9.0$ Hz), another ABq at 8.33 and 7.47 ($J_{5,6} = 9.0$ Hz) and three singlets at δ 7.26 (1H), 8.70 (1H) and 9.67 (1H); MS: 317 ($[M]^+$, 100), 287 (2), 259 (10.3), 201 (19.8), 174 (4) and 159 (3.5). These spectral data characterize the alkaloid as norsanguinarine [18, 19].

Fraction B. This fraction (17.5 g) eluted with $C_6H_6 + 0.5\%$ MeOH comprised (–)-norchelidone (95 mg), (+)-glaucine

[11.5 g, colourless prisms, mp 135° (Et_2O)], protopine [1.2 g, mp 206–207°] and (+)-isocorydine [11 mg, colourless prisms, mp 184–185° (EtOH)]. The alkaloids were sepd by fractional crystallization in EtOH and prep. TLC (S_2).

(–)-Norchelidone, colourless prisms, mp 210–211 (lit. [20] 199°), $[\alpha]_D^{20} - 110^\circ$ (EtOH). IR: (KBr) ν_{max} 3350–3200 cm^{-1} (assoc. OH) and 1650 cm^{-1} (aromatic bands); UV: (EtOH) λ_{max} ($\log \epsilon$) 240 (3.88) and 294 (3.95) nm; 100 MHz 1H NMR: ($CDCl_3$) δ 3.12 (1H, s, half band width 7 Hz, C-5H), two br singlets at 4.25 (1H, half band width 7 Hz, C-6H), 5.97 (4H, s, $2 \times$ CH_2O_2), four aromatic protons appearing at δ 6.78 (2H, s), 6.65 (1H, s) and 6.76 (1H, s); MS: 339 ($[M]^+$, 100), 321 ($[M - 18]^+$, 83.8), 304 (74.2), 294 (54.1), 293 (46.9), 246 (19.7), 235 (15.8), 174 (31.8), 162 (65), 148 (63.8), 135 (22) and 91 (8.9). All these data conform to structure of norchelidone [3, 20].

Fraction C. This fraction eluted with $C_6H_6 + 2\%$ MeOH (0.3 g) contained (+)-corydine [15 mg, colourless prisms, mp 149–150° (Et_2O)] and dihydroponteedrine (35 mg). The latter was obtained in a pure state after recrystallization from EtOH of the substance eluted from the red coloured zone on the TLC plates (S_3).

Fraction D. This fraction (0.350 g) was collected from an orange-yellow zone of the column when it was eluted with $C_6H_6 + 5\%$ MeOH. Three alkaloid spots were detected (TLC) in this mixt., one of which was orange-yellow coloured. The mixt. was dissolved in hot EtOH and after cooling orange-yellow crystals of 1,2,9,10-tetramethoxyxaporphine [75 mg, mp 224° (EtOH)] were obtained [9, 21]. α -Allocryptopine [15 mg, colourless prisms, mp 160–161° (EtOH)] and (+)-cataline (40 mg) were sepd by prep. TLC (S_3) from the mother liquor.

(+)-Cataline, colourless prisms, mp 176–178° ($MeOH + H_2O$), $[\alpha]_D^{22} 163^\circ$ (EtOH). IR: (KBr) ν_{max} 3530 (OH), 1605 and 1520 ($C=C$ and aromatic bands); UV: (EtOH) $\lambda_{max}(\log \epsilon)$ 302 (4.25 and 283 (4.14) nm; 60 MHz 1H NMR: ($CDCl_3$) δ 2.58 (3H, s, N-Me), 3.60 (3H, s, OMe), 3.84 (3H, s, OMe), 3.90 (6H, s, $2 \times$ OMe), 4.54 (1H, br s, H-4), 8.05 (1H, s, H-11), 6.82 (1H, s, H-3), 6.66 (1H, s, H-8) and 3.02 (1H, br s, H-5). These data are similar to those described for cataline [6, 22].

Fraction F. This fraction (0.230 mg) was collected from a green-coloured zone of the column, eluting with $C_6H_6 + 10\%$ MeOH. It was fractionated by TLC (S_3) to furnish (+)-isoboldine [13 mg, colourless prisms, mp 121–123° (EtOH)] and corunnine [55 mg, green-violet prisms, mp 268–269° (EtOH)]. The two alkaloids were identified by direct comparison (IR, mmp, TLC) with authentic samples.

Acknowledgements—The authors are very grateful to Prof. M. Hanaoka, Kanazawa University, Japan, for UV, MS and NMR measurements of some alkaloids and to Prof. N. Mollov, University of Plovdiv, Bulgaria, for the samples of corunnine and synthetic dihydroponteedrine.

REFERENCES

1. Manske, R. H. F. (1940) *Chem. Abst.* 3022.
2. Slavík, J. (1954) *Chem. Listy* **48**, 1387.
3. Slavík, J. and Slavíkova, L. (1959) *Coll. Czech. Chem. Commun.* **24**, 3141.
4. Novák, V. and Slavík, J. (1977) *Coll. Czech. Chem. Commun.* **39**, 3352.
5. Ribas, I., Sueiras, J. and Castedo, L. (1971) *Tetrahedron Letters* **33**, 3093.
6. Ribas, I., Sueiras, J. and Castedo, L. (1972) *Tetrahedron Letters*, **20**, 2033.
7. Castedo, L., Dominguez, D., Saá, J. M. and Suau, R. (1978) *Tetrahedron Letters* **32**, 2923.
8. Castedo, L., Dominguez, D., Saá, J. M. and Suau, R. (1979) *Tetrahedron Letters*, **47**, 4589.
9. Kiryakov, H. G. and Panov, P. (1969) *C.R. Acad. Bulg. Sci.* **22**, 1019.
10. Dutschewska, H. B., Orahovats, A. S. and Mollov, N. M. (1973) *C.R. Acad. Bulg. Sci.* **26**, 899.
11. Kiryakov, H. G. (1968) *Chem. Ind.* 1807.
12. Chervenkova, V. B., Mollov, N. M. and Paszyc, S. (1981) *Phytochemistry* **20**, 2285.
13. Kiryakov, H. G. (1972) *Folia Medica (Bulgaria)*, **14**, 75.
14. MacLean, D. B., Gracey, D. E., Saunders, J. K., Rodrigo, R. and Manske, R. H. F. (1969) *Can. J. Chem.* **47**, 1951.
15. Onda, M., Abe, K., Yonezawa, K., Esumo, N. and Suzuki, T. (1970) *Chem. Pharm. Bull.* **18**, 1435.
16. Slavík, J. and Šantavý, F. (1972) *Coll. Czech. Chem. Commun.* **37**, 2804.
17. Slavík, J. and Slavíkova, L. (1977) *Coll. Czech. Chem. Commun.* **42**, 2686.
18. Sainsbury, M., Dyke, S. F. and Moon, B. J. (1970) *J. Chem. Soc.* 1797.
19. Furuya, T., Ikuta, A. and Syono, K. (1972) *Phytochemistry* **11**, 3041.
20. Slavík, J. (1959) *Coll. Czech. Chem. Commun.* **24**, 3601.
21. Cohen, J., VonLangenthal, W. and Taylor, M. I. (1961) *J. Org. Chem.* **24**, 4143.
22. Hoshino, O., Hara, H., Ogawa, M. and Umezawa, B. (1975) *Chem. Pharm. Bull.* **23**, 2578.
23. Hara, H., Hashimoto, F., Hoshimoto, O. and Umezawa, B. (1984) *Chem. Pharm. Bull.* **32**, 4154.